简历:
教育经历
1995.09-1998.07 复旦大学 光学 理学博士
1992.09-1995.07 厦门大学 光学 理学硕士
1988.09-1992.07 厦门大学 物理学 理学学士
工作经历
2014.01-今 上海海交通大学物理与天文学院 教授
2002.11-2003.04 欧盟联合研究中心 访问学者
2001.05-2002.04 斯图加特大学等离子体研究所 访问学者
2000.01-2013.12 上海交通大学物理与天文学院 副教授
1998.08-1999.12 上海交通大学物理与天文学院 讲师
获奖和人才计划
1999年获蔡诗东等离子体物理奖
2004年获上海青年科技启明星计划资助
2010年入选上海交通大学SMC-晨星青年学者奖励计划(A类)
研究兴趣
相对于低气压等离子体,大气压等离子体无需真空系统,适于开展等离子体-液体相互作用研究。众所周知,低气压等离子体辅助气相沉积、刻蚀技术已广泛应用于半导体工业,那么大气压等离子体是否能够成为辅助液相合成、修饰的有力工具呢?针对这一问题,课题组开展“大气压等离子体和液体相互作用——大气压等离子体辅助液相合成、修饰技术——纳米材料物化特性和功能特性优化”系列研究。
研究成果
1. 大气压等离子体诊断和大气压等离子体非平衡特性和非线性演化研究
1.1 非平衡特性研究
1. A. Majeed, X. X. Zhong*, S. F. Xu, X. H. Wu, U. Cvelbar, and Z. M. Sheng. The influence of discharge capillary size, distance, and gas composition on the non-equilibrium state of microplasma. Plasma Processes and Polymers, 13(7): 690–697 (2016).
2. S. F. Xu, X. X. Zhong*, and A. Majeed. Neutral gas temperature maps of the pin-to-plate argon micro discharge into the ambient air. Physics of Plasmas, 22(3): 033502 (2015).
3. S. F. Xu and X. X. Zhong*. Heat transport of nitrogen in helium atmospheric pressure microplasma. Applied Physics Letters, 103(2): 024101 (2013).
4. Y. Lu, S. F. Xu, X. X. Zhong*, K. Ostrikov, U. Cvelbar, and D. Mariotti. Characterization of a dc-driven microplasma between a capillary tube and water surface. EPL, 102(1): 15002 (2013).
1.2 非线性演化研究
1. Y. F. Chen, B. W. Feng, Q. Zhang, R. Y. Wang, K. Ostrikov, and X. X. Zhong*. Temperature dependence of pattern transitions on water surface in contact with dc microplasmas. Plasma Science and Technology, 22(5): 055404 (2020).
2. S. F. Xu and X. X. Zhong*. Self-deformation in a direct current driven helium jet micro discharge. Physics of Plasmas, 23(1): 010701 (2016).
3. S. F. Xu and X. X. Zhong*. Non-linear macro evolution of a dc driven micro atmospheric glow discharge. Physics of Plasmas, 22(10): 103519 (2015).
1.3 诊断技术研究
1. B. W. Feng, R. Y. Wang, Y. P. X. Ma, and X. X. Zhong*. Evolution of electron density of pin-to-plate discharge plasma under atmospheric pressure. Wuli Xuebao/Acta Physica Sinica, 70(9): 095201 (2021).
2. B. W. Feng, X. X. Zhong*, Q. Zhang, Y. F. Chen, R. Y. Wang, and K. Ostrikov. Effect of duty cycle on pulsed discharge atmospheric pressure plasma: Discharge volume and remnant electron density. Plasma Sources Science and Technology, 29(8): 085017 (2020).
3. B. W. Feng, X. X. Zhong*, Q. Zhang, Y. F. Chen, Z. M. Sheng, and K. Ostrikov. Size and electron density of open-air plasmas diagnosed by optical imaging. Journal of Physics D: Applied Physics, 52(26): 265203 (2019).
2. 大气压等离子体辅助液相生长纳米材料研究
2.1 金、银、金银合金纳米颗粒合成研究
1. Y. P. X. Ma, R. Y. Wang, T. T. Yan, X. R. Qin, Q. Zhang, X. X. Zhong*. On the way of making highly stable Ag nanoparticles with a narrower size distribution by microplasma. Plasma Processes and Polymers, e2200059, https://doi.org/10.1002/ppap.202200059 (2022).
2. T. T. Yan, X. X. Zhong*, A. E. Rider, Y. Lu, S. A. Furman, and K. Ostrikov. Microplasma- chemical synthesis and tunable real-time plasmonic responses of alloyed AuxAg1-x nanoparticles. Chemical Communications, 50(24): 3144–3147 (2014) (Inside front cover).
3. X. Z. Huang, Y. S. Li, and X. X. Zhong*. Effect of experimental conditions on size control of Au nanoparticles synthesized by atmospheric microplasma electrochemistry. Nanoscale Research Letters, 9(1): 572 (2014).
4. X. Z. Huang, X. X. Zhong*, Y. Lu, Y. S. Li, A. E. Rider, S. A. Furman, and K. Ostrikov. Plasmonic Ag nanoparticles via environment-benign atmospheric microplasma electrochemistry. Nanotechnology, 24(9): 095604 (2013).
2.2 碳点合成研究
1. X. Qin, J. L. Liu, Q. Zhang, W. T. Chen*, X. X. Zhong*, and J. He*. Synthesis of yellow-fluorescent carbon nano-dots by microplasma for imaging and photocatalytic inactivation of cancer cells. Nanoscale Research Letters, 16(1): 14 (2021).
2. Q. Y. Wang, Q. Zhang*, Y. F. Chen, J. He*, K. Jiang, Z. G. Hu, and X. X. Zhong*. Blue luminescent amorphous carbon nanoparticles synthesized by microplasma processing of folic acid. Plasma Processes and Polymers, 15(1): 1700088 (2018) (Back cover).
3. X. Z. Huang, Y. S. Li, X. X. Zhong*, A. E. Rider, and K. Ostrikov. Fast microplasma synthesis of blue luminescent carbon quantum dots at ambient conditions. Plasma Processes and Polymers, 12(1): 59–65 (2015) (Back cover).
4. Y. S. Li, X. X. Zhong*, A. E. Rider, S. A. Furman, and K. Ostrikov*. Fast, energy-efficient synthesis of luminescent carbon quantum dots. Green Chemistry, 16(5): 2566–2570 (2014).
3. 碳量子点发光特性、稳定性和功能化研究
1. Q. Zhang*, R. Y. Wang, B. W. Feng, and X. X. Zhong* and K. Ostrikov. Photoluminescence mechanism of carbon dots: triggering high-color-purity red fluorescence emission through edge amino protonation. Nature Communications, 12(1): 6856 (2021).
2. Q. Zhang, S. Z. Deng, J. L. Liu, X. X. Zhong*, J. He*, X. F. Chen*, B. W. Feng, Y. F. Chen, and K. Ostrikov. Cancer-targeting graphene quantum dots: Fluorescence quantum yields, stability, and cell selectivity. Advanced Functional Materials, 29(5): 1805860 (2019).