I will present the advances in multimodal linear, nonlinear, and spatio-temporal nano-imaging for the study of fundamental optical and plasmonic phenomena, coupled single molecule or quantum dynamics, with unprecedented nanometer spatial and femtosecond resolution, sensitivity and precision. To gain the desired simultaneous nanometer spatial resolution with spectroscopic specificity and femtosecond temporal resolution we combine plasmonic and optical antenna concepts with ultrafast and shaped laser pulses to precisely control optical excitation on femtosecond time and nanometer length scales from the visible to THz spectral range. In the implementation with scattering scanning near-field microscopy (s-SNOM) or other tip-enhanced microscopy modalities with nonlinear, ultrafast, and IR and Raman vibrational spectroscopies, the resulting enhanced and qualitatively new forms of light-matter interaction enable deep-subwavelength spatially resolved imaging of heterogeneities and nano-confinement as they define the properties of most functional materials. I will present several new concepts extending tip-enhanced spectroscopy into the nonlinear and ultrafast regime for nano-scale imaging and spectroscopy of surface molecules and nano-solids.
Markus Raschke is professor at the Department of Physics, Department of Chemistry, and JILA at the University of Colorado at Boulder. His research is on the development and application of new nano-scale nonlinear and ultrafast spectroscopy techniques to control the light-matter interaction on the nanoscale. These techniques allow for imaging structure and dynamics of molecular and correlated matter with nanometer spatial resolution. He received his PhD in 2000 from the Max-Planck Institute of Quantum Optics and the Technical University in Munich, Germany. Following research appointments at the University of California at Berkeley, and the Max-Born-Institute in Berlin, he became faculty member at the University of Washington in 2006, before moving with his group to Boulder in 2010. He is fellow of the Optical Society of America, the American Physical Society, and the American Association for the Advancement of Science.
Host: Xianfeng Chen xfchen@sjtu.edu.cn