Home

School of Physics and Astronomy Shanghai Jiao Tong University

  • Login
  • Register

Primary links

  • Home
  • About
    • News
    • History
    • Physics@SJTU
    • Positions Available
    • Contact Us
  • People
    • Faculty
    • Academic Staff
    • Postdocs
    • Engineers & Technicians
  • Academics
    • Undergraduate Program
    • Undergraduate Application
    • Graudate Program
    • Graduate Application
    • National Center for Physics Education
  • Events
    • Conferences
    • Colloquia
    • Public Lecture
    • CAA Seminars
    • CMP Seminars
    • INPAC Seminars
    • INS Seminars
    • JOINT SEMINARS
    • OSER Seminars
    • LLP_Seminars
    • Frontiers Science Forum
  • Research
    • Research Institutes
    • Key Labs
    • Key Projects
  • Resources
    • University Offices and Divisions
  • Alumni
    • Alumni Photos
    • Class Coordinators
    • Donation

Events

  • Conferences
  • CAA Seminars
  • CMP Seminars
  • School Colloquia
  • Frontiers Science Forum
  • INPAC Seminars
  • INS Seminars
  • Joint Seminars
  • LLP Seminars
  • OSER Seminars
  • Public Lecture
Home

Colloquium 150:Theoretical Study of New Silicon Phases with Exceptional Optoelectronic Properties (Dr. Bing Huang, May 22)

Colloquium 150

Title: Theoretical Study of New Silicon Phases with Exceptional Optoelectronic Properties

Speaker: Bing Huang, Oak Ridge National Laboratory

Location: Room 111, Physics Building

Time: 13:00-14:30, Thu, May 22 2014

Abstract:
Silicon is an extremely important electronic material in technological fields, but it is not a good optoelectronic material. In the last few decades, researchers have heavily studied the structural and electronic properties of silicon in order to improve its optical absorption in the visible light range using analyses of metastable silicon phases, silicon-based alloys, and silicon-based superlattices. In this talk, I will present our recent theoretical efforts on searching and designing new silicon phases, from bulk to two-dimensional (2D) silicon, with exceptional optoelectronic properties.  Especially, we find that chemically functionalized 2D silicon could be the best candidates to create efficient thin-film solar absorbers and silicon-based, white-light-emitting diodes, paving the way for new “green” energy applications.

  • Weibo                              WeChat                                                                                     
                                                                                                           

    Copyright © School of Physics and Astronomy, Shanghai Jiao Tong University. All Rights Reserved.      Chinese Version