Home

School of Physics and Astronomy Shanghai Jiao Tong University

  • Login
  • Register

Primary links

  • Home
  • About
    • News
    • History
    • Physics@SJTU
    • Positions Available
    • Contact Us
  • People
    • Faculty
    • Academic Staff
    • Postdocs
    • Engineers & Technicians
  • Academics
    • Undergraduate Program
    • Undergraduate Application
    • Graudate Program
    • Graduate Application
    • National Center for Physics Education
  • Events
    • Conferences
    • Colloquia
    • Public Lecture
    • CAA Seminars
    • CMP Seminars
    • INPAC Seminars
    • INS Seminars
    • JOINT SEMINARS
    • OSER Seminars
    • LLP_Seminars
    • Frontiers Science Forum
  • Research
    • Research Institutes
    • Key Labs
    • Key Projects
  • Resources
    • University Offices and Divisions
  • Alumni
    • Alumni Photos
    • Class Coordinators
    • Donation

Events

  • Conferences
  • CAA Seminars
  • CMP Seminars
  • School Colloquia
  • Frontiers Science Forum
  • INPAC Seminars
  • INS Seminars
  • Joint Seminars
  • LLP Seminars
  • OSER Seminars
  • Public Lecture
Home

Colloquium 148:Single-fluxon controlled Resistance Switching in a Nanowire (Moses Chan, May 7)

Colloquium 148

Title: Single-fluxon controlled Resistance Switching in a Nanowire

Speaker: Moses Chan, Penn State University

Location: Room 111, Physics Building

Time: 15:00-16:00, Wed, May 7, 2014

Abstract:
The ability to manipulate a single quantum object, such as a single electron or a single spin, to induce a change in a macroscopic observable lies at the heart of nanodevices of the future. Here I report an experimental geometry wherein a single superconducting fluxon can be exploited to switch the resistance of a nanowire between two discrete values. Specifically, we study centimeter-long nanowires of superconducting Ga-In eutectic and observe a hysteretic resistance switching in the presence of a magnetic field. The nonzero resistance occurs when a Ga nanodroplet spontaneously formed along the length of the nanowire traps one or more superconducting fluxons, thereby driving a Josephson weak-link created by a second nearby Ga nanodroplet normal. This experiment opens the possibility of developing single-fluxon logic and memory devices.

  • Weibo                              WeChat                                                                                     
                                                                                                           

    Copyright © School of Physics and Astronomy, Shanghai Jiao Tong University. All Rights Reserved.      Chinese Version