廖世俊 教授
杰出人才类别: 
获得年份: 
2001
杰出人才类别: 
获得年份: 
2001
研究机构: 交叉科学研究所
办公电话: +86-21-34204445 
电子邮箱: sjliao@sjtu.edu.cn

简历:

上海交通大学船舶海洋与建筑工程学院,上海交通大学物理与天文学院双聘教授。

1989-1992年,作为中德联合培养博士生留学德国汉堡大学,1992年获上海交通大学博士学位。1992年开始任职于上海交通大学船舶海洋与建筑工程学院,历任讲师(1992)、副教授(1993)、教授(1996)、特聘教授(2007)、讲席教授(2015)。曾获国家自然科学基金委“杰出青年科学基金”(2001年),入选教育部“长江奖励计划特聘教授”(2001年)。现为上海交通大学"春申"讲席教授,博士生导师,“海洋工程国家重点实验室”副主任,兼任上海交通大学数学系教授、教育部科学计算重点实验室教授。1992年原创性地提出求解强非线性问题的“同伦分析方法”,是“同伦分析方法”的创立者和奠基人。迄今出版两本英文专著(Chapman & Hall/CRC,2003;Springer, 2012),主编一本英文专著(Advances in Homotopy Analysis Method, World Scientific Press, 2013),发表130余篇SCI论文,论著和博士论文共被SCI检索他引7329次,h-index为41。连续三年(2014-2016)入选全球高引用科学家(Highly-Cited Researchers 2014)。2009年获 “上海市第七届自然科学牡丹奖”和 “上海市自然科学一等奖”,2016年获“国家自然科学二等奖”。

主要研究领域:
1、非线性波浪、海洋工程
2、非线性力学、流体力学
3、计算流体动力学(CFD )、数值计算方法
4、应用数学
主要研究成果:
1、原创性地提出了一种求解非线性微分方程的解析近似方法 —— “同伦分析方法”,是“同伦分析方法”的创立者和奠基人
2、提出”Clean Numerical Simulation“ (CNS) 高精度数值计算方法,揭示微观尺度不确定性为宏观随机性之起源
3、提出“统一波浪模型” (Unified Wave Model, UWM),首次给出有限水深中的尖峰孤立波,证明其与传统光滑波浪之相容性 
4、应用“同伦分析方法”,从理论上率先发现定常共振波系之多解,并(与他人合作)用物理实验证明其存在性

主要著作:

专著
1. Shijun Liao, Beyond Perturbation: Introduction to the Homotopy Analysis Method, Chapman & Hall/CRC, Boca Raton, 2003.
2.Shijun Liao, Homotopy Analysis Method in Nonlinear Differential Equations, Springer & Higher Education Press, Heidelberg, 2012. 
3. SHijun Liao (ed.), Advances in Homotopy Analysis Method, World Scientific Press, 2013. 
  
代表性论文
  1.  Shijun Liao (廖世俊), “A uniformly valid analytic solution of 2D viscous flow past a semi-infinite flat plate”, Journal of Fluid Mechanics, Vol. 385, pp. 101-128, 1999. 
  2.  Shijun Liao (廖世俊) and A. Campo, “Analytic solutions of the temperature distribution in Blasius viscous flow problems”, Journal of Fluid Mechanics, Vol. 453, pp. 411-425, 2002. 
  3.  Shijun Liao (廖世俊), “On the analytic solution of magnetohydrodynamic flows of non-Newtonian fluids over a stretching sheet”, Journal of Fluid Mechanics, vol. 488, pp. 189-212, 2003. 
  4.  Dali Xu, Zhiliang Lin, Shijun Liao (廖世俊), Michael Stiassnie, "On the steady-state fully resonant progressive waves in water of finite depth", Journal of Fluid Mechanics, vol. 710, pp. 379-418 (2012) ( doi:10.1017/jfm.2012.370 )
  5.  Zeng Liu and Shijun Liao (廖世俊), "Steady-state resonance of multiple wave interactions in deep water", Journal of Fluid Mechanics, vol. 742, pp 664-700 (2014).
  6. Zeng LIU, Dali XU, Jun LI, Tao PENG, A. Alsaedi and Shijun LIAO (廖世俊), "On the existence of steady-state resonant water waves in experiments", Journal of Fluid Mechanics, vol. 763, pp. 1 - 23 (2015) (doi:10.1017/jfm.2014.658) (Open Asses 开放获取)
  7. Hang Xu, Zhi-Liang Lin, Shi-Jun Liao (廖世俊), Jie-Zhi Wu and Joseph Majdalani, “Homotopy based solutions of the Navier–Stokes equations for a porous channel with orthogonally moving walls”, Physics Of Fluids, 22: 053601 (2010) 
  8. Shijun Liao (廖世俊), “Series solutions of unsteady boundary-layer flows over a stretching flat plate”, Studies in Applied Mathematics, 117:239-263, 2006.
  9.  Shijun Liao (廖世俊), "An approximate solution technique not depending on small parameters: a special example". International Journal of Nonlinear Mechanics, 30, 371-380, 1995.
  10.  Shijun Liao (廖世俊), “On the homotopy analysis method for nonlinear problems”, Applied Mathematics and Computation, vol. 147/2, pp. 499-513, 2004.
  11. Shijun Liao (廖世俊) and Yue Tan, “A general approach to obtain series solutions of nonlinear differential equations”, Studies in Applied Mathematics, Vol. 119, pp. 297-254, 2007.
  12.  Yajie Li, Ben T. Nohara and Shijun Liao (廖世俊), “Series solutions of coupled Van der Pol equation by means of homotopy analysis method”, Journal Of Mathematical Physics, Vol 51: 063517 (2010)
  13. S.J. Liao (廖世俊), “On the reliability of computed chaotic solutions of non-linear differential equations”, Tellus-A, vol. 61, pp. 550-564 (2009)
  14. S.J. Liao (廖世俊), “On the numerical simulation of propagation of micro-level inherent uncertainty for chaotic dynamic systems”. Chaos, Solitons & Fractals, 47: 1-12 (2013)
  15. S.J. Liao (廖世俊), “Physical limit of prediction for chaotic motion of three-body problem”, Communications of Nonlinear Science and Numerical Simulations, 19:601-616 (2013).
  16.  S.J. Liao (廖世俊), “Do peaked solitary water waves indeed exist?”, Communications in Nonlinear Science and Numerical Simulation, 19:1792-1821 (2014) ( doi: 10.1016/j.cnsns.2013.09.042 )
  17. S.J. Liao (廖世俊) and Xiaoming LI,"On the inherent self-excited macroscopic randomness of chaotic three-body systems", Int. J. Bifurcation and Chaos, accepted ( http://arxiv.org/abs/1407.4019 )