In two spatial dimensions, it is well known that particles or particle-like excitations can come with fractional statistics, beyond the usual dichotomy of Bose versus Fermi statistics. In this talk, I move one dimension higher to three spatial dimensions, and study loop-like objects instead of point-like particles. Just like particles in 2D, loops can exhibit interesting fractional braiding statistics in 3D. I will talk about loop braiding statistics in the context of symmetry protected topological phases, which generalize the concept of topological insulators.
王晨杰,2007年本科毕业于中国科学技术大学近代物理系,2012年获美国布朗大学物理学博士学位。2012-2013在美国马里兰大学理论凝聚态中心任博士后。2013年八月至今,在美国芝加哥大学任博士后。 主要从事理论凝聚态研究, 包括拓扑量子态的理论(拓扑绝缘体,量子霍尔效应,分数量子统计等),介观系统中的量子输运(霍尔效应边缘态,Luttinger液体等),以及非平衡态统计物理。在Phys. Rev. Lett., Phys. Rev. B等学术杂志上发表论文十余篇。
邀请人:刘荧 yingl@sjtu.edu.cn
联系人:杨洋 catherinecherry@sjtu.edu.cn